Final Exam- Review 1 - Answers

Peyam Ryan Tabrizian

Wednesday, December 7th, 2011
1)

$$
D=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad P=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
-1 & 1 & 0
\end{array}\right]
$$

2)

$$
\left\{\frac{1}{\sqrt{2}}\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right], \frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right], \frac{1}{\sqrt{2}}\left[\begin{array}{c}
0 \\
-1 \\
1 \\
0
\end{array}\right]\right\}
$$

3) 0 (use the fact that $\int_{-\pi}^{\pi} \cos (m x) \sin (n x) d x=0$ etc.)
4)

$$
D=\left[\begin{array}{cc}
0 & 0 \\
0 & 10
\end{array}\right], \quad P=\left[\begin{array}{cc}
\frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}} \\
\frac{1}{\sqrt{10}} & \frac{-3}{\sqrt{10}}
\end{array}\right]
$$

5) $10 y_{2}^{2}$, where $\mathbf{y}=P^{T} \mathbf{x}$, and P is the matrix in 4).
6)

$$
A=\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & 3 & 1 \\
0 & -1 & 3
\end{array}\right]
$$

7) $\operatorname{dim}(V)=3$, and:

$$
\mathcal{B}=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

8) $\operatorname{Rank}(A)=2$

$$
\begin{aligned}
& \operatorname{Col}(A)=\operatorname{Span}\left\{\left[\begin{array}{c}
1 \\
-1 \\
5
\end{array}\right],\left[\begin{array}{c}
-4 \\
2 \\
-6
\end{array}\right]\right\} \\
& \operatorname{Row}(A)=\operatorname{Span}\left\{\left[\begin{array}{c}
1 \\
0 \\
-1 \\
5
\end{array}\right],\left[\begin{array}{c}
0 \\
-2 \\
5 \\
-6
\end{array}\right]\right\} \\
& \operatorname{Nul}(A)=\operatorname{Span}\left\{\left[\begin{array}{l}
2 \\
5 \\
2 \\
0
\end{array}\right],\left[\begin{array}{c}
-5 \\
-3 \\
0 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

9) (a) TRUE (by rank-nullity theorem, $\operatorname{Rank}(A)=n=$ number of columns)
(b) FALSE (again by rank-nullity theorem, the smallest possible dimension is 2 , not 6)
(c) TRUE (again by rank-nullity theorem and using the fact that $\operatorname{dim}(N u l(A))=$ 0)
(d) TRUE (use $Q^{T} Q=I$)
(e) TRUE (see the proof of theorem 1 on page 390)
(f) TRUE (Orthogonal projections)
(g) TRUE (If $A=P D P^{-1}$, then $A^{2}=P D^{2} P^{-1}$, and notice D^{2} is diagonal!)
(h) FALSE (For example, take $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$)
(i) $\operatorname{TRUE}\left(A\right.$ is invertible, so $\left.\operatorname{Row}(A)=\mathbb{R}^{n}=\operatorname{Col}(A)\right)$
(j) TRUE (at least I hope so :))
